Solving Earth Gravity Field from GOCE Gravity Gradient Data by Tensor Spherical Harmonics Analysis

Yongqi Zhao^{1,2} Xinyu Xu¹ Jiancheng Li¹

¹School of Geodesy and Geomatics, Wuhan University, China ²Geodetic Institute, University of Stuttgart, Germany

2nd Workshop of DAAD Thematic Network Luxembourg, July 24-28, 2018

Outline

1 Simple Introduction of GOCE Satellite

2 Tensor Spherical Harmonics Analysis Gravity Gradient Tensor Basic Theory of TSHA

3 Application of TSHA to GOCE Gravity Gradient

Numerical Experiment Problems Strategy Flow-chart

4 Results

Data

Degree-Error Root Mean Square Validation by GPS/Levelling Data

Mode: SST + SGG

Picture cited from ESA

- Mode: SST + SGG
- Average orbital height: 260 km

Picture cited from ESA

- Mode: SST + SGG
- Average orbital height: 260 km
- Inclination: 96.7°

Picture cited from ESA

2 Tensor Spherical Harmonics Analysis

3 Application of TSHA to GOCE Gravity Gradient

4 Results

Symmetric, trace-free

$$\boldsymbol{V} = \begin{pmatrix} V_{xx} & V_{xy} & V_{xz} \\ V_{yx} & V_{yy} & V_{yz} \\ V_{zx} & V_{zy} & V_{zz} \end{pmatrix}$$

Symmetric, trace-free

$$\boldsymbol{V} = \begin{pmatrix} V_{xx} & V_{xy} & V_{xz} \\ V_{yx} & V_{yy} & V_{yz} \\ V_{zx} & V_{zy} & V_{zz} \end{pmatrix}$$

In most cases, V_{ij} $(i, j \in \{x, y, z\})$ are treated independently.

Symmetric, trace-free

$$\boldsymbol{V} = \begin{pmatrix} V_{xx} & V_{xy} & V_{xz} \\ V_{yx} & V_{yy} & V_{yz} \\ V_{zx} & V_{zy} & V_{zz} \end{pmatrix}$$

In most cases, V_{ij} $(i, j \in \{x, y, z\})$ are treated independently.

• Direct Approach

Symmetric, trace-free

$$\boldsymbol{V} = \begin{pmatrix} V_{xx} & V_{xy} & V_{xz} \\ V_{yx} & V_{yy} & V_{yz} \\ V_{zx} & V_{zy} & V_{zz} \end{pmatrix}$$

In most cases, V_{ij} ($i, j \in \{x, y, z\}$) are treated independently.

- Direct Approach
- Time-Wise Approach

Symmetric, trace-free

$$\boldsymbol{V} = \begin{pmatrix} V_{xx} & V_{xy} & V_{xz} \\ V_{yx} & V_{yy} & V_{yz} \\ V_{zx} & V_{zy} & V_{zz} \end{pmatrix}$$

In most cases, V_{ij} ($i, j \in \{x, y, z\}$) are treated independently.

- Direct Approach
- Time-Wise Approach
- Space-Wise Approach

Symmetric, trace-free

$$\boldsymbol{V} = \begin{pmatrix} V_{xx} & V_{xy} & V_{xz} \\ V_{yx} & V_{yy} & V_{yz} \\ V_{zx} & V_{zy} & V_{zz} \end{pmatrix}$$

In most cases, V_{ij} ($i, j \in \{x, y, z\}$) are treated independently.

- Direct Approach
- Time-Wise Approach
- Space-Wise Approach

• • • •

Expression of symmetric spherical dyadics

$$V = V_{zz} \mathbf{e}_{zz} + 2V_{yz} \mathbf{e}_{yz} + \frac{1}{2}(V_{xx} - V_{yy})(\mathbf{e}_{xx} - \mathbf{e}_{yy}) + 2V_{xy} \mathbf{e}_{xy} + \frac{1}{2}(V_{xx} + V_{yy})(\mathbf{e}_{xx} + \mathbf{e}_{yy})$$

with

$$\mathbf{e}_{ij} = \mathbf{e}_i \otimes \mathbf{e}_j \qquad i,j \in \{x,y,z\}$$

Combinations of components (Rummel, 1992)

$$V^{(1)} = V_{zz} \mathbf{e}_{zz}$$

$$V^{(2)} = 2 V_{xz} \mathbf{e}_{xz} + 2 V_{yz} \mathbf{e}_{yz}$$

$$V^{(3)} = \frac{1}{2} (V_{xx} - V_{yy}) (\mathbf{e}_{xx} - \mathbf{e}_{yy}) + 2 V_{xy} \mathbf{e}_{xy}$$

Series Representation of Combinations

Series representation (Martinec, 2003)

$$\boldsymbol{V}^{(1)} = \frac{GM}{R^3} \sum_{n=2}^{\infty} \left(\frac{R}{r}\right)^{n+3} \sum_{m=-n}^{n} (n+1)(n+2)\overline{C}_{nm} \boldsymbol{Z}_{nm}^{(1)}$$
$$\boldsymbol{V}^{(2)} = \frac{GM}{R^3} \sum_{n=2}^{\infty} \left(\frac{R}{r}\right)^{n+3} \sum_{m=-n}^{n} -2(n+2)\overline{C}_{nm} \boldsymbol{Z}_{nm}^{(2)}$$
$$\boldsymbol{V}^{(3)} = \frac{GM}{R^3} \sum_{n=2}^{\infty} \left(\frac{R}{r}\right)^{n+3} \sum_{m=-n}^{n} \frac{1}{2}\overline{C}_{nm} \boldsymbol{Z}_{nm}^{(3)}$$

 $Z_{nm}^{(1)}, Z_{nm}^{(2)}, Z_{nm}^{(3)}$ are subsets of the complete orthogonal group of tensor functions.

Series Representation of Combinations

Series representation (Martinec, 2003)

$$\boldsymbol{V}^{(1)} = \frac{GM}{R^3} \sum_{n=2}^{\infty} \left(\frac{R}{r}\right)^{n+3} \sum_{m=-n}^{n} (n+1)(n+2)\overline{C}_{nm} \boldsymbol{Z}_{nm}^{(1)}$$
$$\boldsymbol{V}^{(2)} = \frac{GM}{R^3} \sum_{n=2}^{\infty} \left(\frac{R}{r}\right)^{n+3} \sum_{m=-n}^{n} -2(n+2)\overline{C}_{nm} \boldsymbol{Z}_{nm}^{(2)}$$
$$\boldsymbol{V}^{(3)} = \frac{GM}{R^3} \sum_{n=2}^{\infty} \left(\frac{R}{r}\right)^{n+3} \sum_{m=-n}^{n} \frac{1}{2}\overline{C}_{nm} \boldsymbol{Z}_{nm}^{(3)}$$

 $Z_{nm}^{(1)}, Z_{nm}^{(2)}, Z_{nm}^{(3)}$ are subsets of the complete orthogonal group of tensor functions.

By a systematic application of the orthogonality, ...

Explicit expression (Martinec, 2003)

$$\overline{C}_{nm}^{(1)} = \frac{\mu}{(n+1)(n+2)} \iint V_{zz} Y_{nm} d\sigma$$

$$\overline{C}_{nm}^{(2)} = \frac{\mu}{n(n+1)(n+2)} \iint \left[V_{xz} E_{nm} + V_{yz} F_{nm} \right] d\sigma$$

$$\overline{C}_{nm}^{(3)} = \frac{\mu}{(n-1)n(n+1)(n+2)} \iint \left[(V_{xx} - V_{yy}) G_{nm} - 2V_{xy} H_{nm} \right] d\sigma$$

Explicit expression (Martinec, 2003)

$$\overline{C}_{nm}^{(1)} = \frac{\mu}{(n+1)(n+2)} \iint V_{zz} Y_{nm} d\sigma$$

$$\overline{C}_{nm}^{(2)} = \frac{\mu}{n(n+1)(n+2)} \iint \left[V_{xz} E_{nm} + V_{yz} F_{nm} \right] d\sigma$$

$$\overline{C}_{nm}^{(3)} = \frac{\mu}{(n-1)n(n+1)(n+2)} \iint \left[(V_{xx} - V_{yy}) G_{nm} - 2V_{xy} H_{nm} \right] d\sigma$$

With

Explicit expression (Martinec, 2003)

$$\overline{C}_{nm}^{(1)} = \frac{\mu}{(n+1)(n+2)} \iint V_{zz} Y_{nm} d\sigma$$

$$\overline{C}_{nm}^{(2)} = \frac{\mu}{n(n+1)(n+2)} \iint \left[V_{xz} E_{nm} + V_{yz} F_{nm} \right] d\sigma$$

$$\overline{C}_{nm}^{(3)} = \frac{\mu}{(n-1)n(n+1)(n+2)} \iint \left[(V_{xx} - V_{yy}) G_{nm} - 2V_{xy} H_{nm} \right] d\sigma$$

With

•
$$\mu = \frac{R^3}{4\pi GM} \left(\frac{r}{R}\right)^{n+3}$$

Explicit expression (Martinec, 2003)

$$\overline{C}_{nm}^{(1)} = \frac{\mu}{(n+1)(n+2)} \iint V_{zz} Y_{nm} d\sigma$$

$$\overline{C}_{nm}^{(2)} = \frac{\mu}{n(n+1)(n+2)} \iint \left[V_{xz} E_{nm} + V_{yz} F_{nm} \right] d\sigma$$

$$\overline{C}_{nm}^{(3)} = \frac{\mu}{(n-1)n(n+1)(n+2)} \iint \left[(V_{xx} - V_{yy}) G_{nm} - 2V_{xy} H_{nm} \right] d\sigma$$

With

•
$$\mu = \frac{R^3}{4\pi GM} \left(\frac{r}{R}\right)^{n+3}$$

• *Y_{nm}* are surface spherical harmonics.

Explicit expression (Martinec, 2003)

$$\overline{C}_{nm}^{(1)} = \frac{\mu}{(n+1)(n+2)} \iint V_{zz} Y_{nm} d\sigma$$

$$\overline{C}_{nm}^{(2)} = \frac{\mu}{n(n+1)(n+2)} \iint \left[V_{xz} E_{nm} + V_{yz} F_{nm} \right] d\sigma$$

$$\overline{C}_{nm}^{(3)} = \frac{\mu}{(n-1)n(n+1)(n+2)} \iint \left[(V_{xx} - V_{yy}) G_{nm} - 2V_{xy} H_{nm} \right] d\sigma$$

With

•
$$\mu = \frac{R^3}{4\pi GM} \left(\frac{r}{R}\right)^{n+3}$$

- *Y_{nm}* are surface spherical harmonics.
- E_{nm} , F_{nm} , G_{nm} and H_{nm} are functions of Y_{nm} .

2 Tensor Spherical Harmonics Analysis

3 Application of TSHA to GOCE Gravity Gradient

A Results

Simulation parameters

Simulation parameters

• Gravity model: EGM2008

Simulation parameters

- Gravity model: EGM2008
- Orbit: GOCE orbit from 20091101 to 20100111

Simulation parameters

- Gravity model: EGM2008
- Orbit: GOCE orbit from 20091101 to 20100111
- Model for continuation and filling: EIGEN-5C

Problems

Colored noise in GOCE gradiometric data

- Colored noise in GOCE gradiometric data
- Ultra-low accuracy of V_{xy} and V_{yz}

- Colored noise in GOCE gradiometric data
- Ultra-low accuracy of V_{xy} and V_{yz}
- The polar gap

- Colored noise in GOCE gradiometric data
- Ultra-low accuracy of V_{xy} and V_{yz}
- The polar gap
- TSHA requires grid data on the sphere.

Strategy

- Bandpass filter with zero-phase shift (Butterworth IIR, $5\sim 100\,mHz)$

- Bandpass filter with zero-phase shift (Butterworth IIR, $5\sim 100\,\mathrm{mHz})$
- Replace V_{xy} and V_{yz} with values from reference model

- Bandpass filter with zero-phase shift (Butterworth IIR, $5\sim 100\,\mathrm{mHz})$
- Replace V_{xy} and V_{yz} with values from reference model
- Fill in the polar gap with values from reference model

- Bandpass filter with zero-phase shift (Butterworth IIR, $5\sim 100\,\mathrm{mHz})$
- Replace V_{xy} and V_{yz} with values from reference model
- Fill in the polar gap with values from reference model
- Downward continuation of SGG by analytical method (Taylor series expansion)

- Bandpass filter with zero-phase shift (Butterworth IIR, $5\sim 100\,\mathrm{mHz})$
- Replace V_{xy} and V_{yz} with values from reference model
- Fill in the polar gap with values from reference model
- Downward continuation of SGG by analytical method (Taylor series expansion)
- Shepard interpolation for griding of data after downward continuation

Strategy

- Bandpass filter with zero-phase shift (Butterworth IIR, $5\sim 100\,\mathrm{mHz})$
- Replace V_{xy} and V_{yz} with values from reference model
- Fill in the polar gap with values from reference model
- Downward continuation of SGG by analytical method (Taylor series expansion)
- Shepard interpolation for griding of data after downward continuation

In addition

Strategy

- Bandpass filter with zero-phase shift (Butterworth IIR, $5\sim 100\,\mathrm{mHz})$
- Replace V_{xy} and V_{yz} with values from reference model
- Fill in the polar gap with values from reference model
- Downward continuation of SGG by analytical method (Taylor series expansion)
- Shepard interpolation for griding of data after downward continuation

In addition

• Reduce the griding error by remove-restore method

Strategy

- Bandpass filter with zero-phase shift (Butterworth IIR, $5\sim 100\,\mathrm{mHz})$
- Replace V_{xy} and V_{yz} with values from reference model
- Fill in the polar gap with values from reference model
- Downward continuation of SGG by analytical method (Taylor series expansion)
- Shepard interpolation for griding of data after downward continuation

In addition

- Reduce the griding error by remove-restore method
- Reduce the influences of the prior model by iteration

Flow-chart

- **2** Tensor Spherical Harmonics Analysis
- 3 Application of TSHA to GOCE Gravity Gradient

Data

Data

• Period: November, 2009~June, 2010

Data

- Period: November, 2009~June, 2010
- Type: IAQ, PRM, SST, SGG

Data

- Period: November, 2009~June, 2010
- Type: IAQ, PRM, SST, SGG

Parameters

Data

- Period: November, 2009~June, 2010
- Type: IAQ, PRM, SST, SGG

Parameters

• Reference model: EGM2008

Data

- Period: November, 2009~June, 2010
- Type: IAQ, PRM, SST, SGG

Parameters

- Reference model: EGM2008
- Grid resolution: $10' \times 10'$

Data

- Period: November, 2009~June, 2010
- Type: IAQ, PRM, SST, SGG

Parameters

- Reference model: EGM2008
- Grid resolution: $10' \times 10'$
- Degree: 240

Differences with Respect to DIR_R5 in Terms of Degree-Error Root Mean Square

Error Spectrum with Respect to DIR_R5 (log 10)

Error Spectrum with Respect to DIR_R5 (log 10)

Degree-Error RMS with Respect to DIR_R5

GPS/Levelling Validation in China (649 points) and America (6169 points)

Max degree 220 with the omission error compensated by EGM2008(Unit: m)

Region	Model	Max	Min	Mean	Std	RMS
China	TSHA	0.928	-0.956	0.234	0.206	0.311
	SPW_R2	1.038	-1.066	0.225	0.251	0.337
	DIR_R2	0.788	-0.637	0.235	0.189	0.301
	TIM_R2	0.809	-0.676	0.242	0.186	0.305
America	TSHA	0.395	-1.553	-0.514	0.318	0.604
	SPW_R2	0.493	-1.642	-0.501	0.319	0.594
	DIR_R2	0.269	-1.566	-0.509	0.297	0.590
	TIM_R2	0.320	-1.512	-0.510	0.300	0.592

Slightly better than SPW_R2 in China

Conclusion

Conclusion

 Compared with the GPS/Leveling data in China and America, the model presented here has good consistency with official models.

Conclusion

• Compared with the GPS/Leveling data in China and America, the model presented here has good consistency with official models.

Outlook

Conclusion

• Compared with the GPS/Leveling data in China and America, the model presented here has good consistency with official models.

Outlook

• All data during the entire mission preiod

Conclusion

 Compared with the GPS/Leveling data in China and America, the model presented here has good consistency with official models.

Outlook

- All data during the entire mission preiod
- Wiener filter for filtering colored noise of gravity gradient data

Conclusion

• Compared with the GPS/Leveling data in China and America, the model presented here has good consistency with official models.

Outlook

- All data during the entire mission preiod
- Wiener filter for filtering colored noise of gravity gradient data
- Block-diagonal LS for combination of 3 types of observations

Thank You!